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A method is developed for imputing missing values when 
the probability of response depends upon the variable 
being imputed. The missing data problem is viewed as 
one of parameter estimation in a regression model with 
stochastic censoring of the dependent variable. The pre- 
diction approach to imputation is used to solve this es- 
timation problem. Wages and salaries are imputed to non- 
respondents in the Current Population Survey and the 
results are compared to the nonrespondents' IRS wage 
and salary data. The stochastic censoring approach gives 
improved results relative to a prediction approach that 
ignores the response mechanism. 
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1. INTRODUCTION 

There is a large literature on the problem of parameter 
estimation with incomplete data, but with few exceptions 
this literature treats the case in which the missing values 
are "missing at random." Rubin (1976, 1981) provides 
a formal probability model of the missing data problem 
in general and derives the conditions under which infer- 
ences can be made about the distribution of the data while 
the process causing the omission of data is ignored. He 
also points out (Rubin 1978, p. 25) that there is very little 
literature on parameter estimation in situations in which 
the mechanism causing the values to be missing is not 
ignorable. The purpose of this article is to treat estimation 
and imputation in one of the cases in which the mecha- 
nism is not ignorable-the case in which the probability 
of nonresponse for the variable of interest depends upon 
the value of that variable. 

In Section 2 we discuss the problems of estimation and 
imputation, first in the case in which the mechanism caus- 
ing the omission of data is ignorable and then in one of 
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the cases in which it is not ignorable. Section 3 presents 
the derivation of the maximum likelihood estimator of 
the parameters of our model and shows how these can 
be used for imputation. In Section 4 we apply our model 
to the problem of imputing missing income data in the 
Current Population Survey (CPS). Information from a 
secondary source on the missing values allows a direct 
test of our imputation procedure. Section 5 contains a 
summary of our results and our conclusions. 

2. ESTIMATION AND IMPUTATION WITH 
INCOMPLETE SAMPLE SURVEY DATA 

2.1 Ignorable Response Mechanism 

The literature on estimation with incomplete sample 
survey data is generally concerned with estimating the 
population total T = EN=, Yi of some variable Y for a 
population of size N. With complete data, the estimation 
of T is to be achieved by taking a sample of size n and 
calculating the value of some estimator. This procedure 
is rendered impossible by the failure of some portion of 
the sample to respond to the survey question on Yi, so 
that only nr complete observations are obtained. In the 
remainder of this section we will assume that the simple 
expansion estimator, T, = N ,I= Yi/n, is to be used in 
conjunction with a procedure for handling nonresponse. 
There are many ways to proceed. An obvious choice is 
to ignore the nonresponse problem and use the nr com- 
plete observations as the "sample:" T2 = N EijE Yilnr 
where Q is the set of indices for respondents in the sam- 
ple. This estimator is equivalent to imputing the average 
Y for the respondents to the nonrespondents, and can 
often yield an unsatisfactory estimate if the nonrespon- 
dents are systematically different from the respondents 
on the variable of interest. 

Another choice when information on auxiliary varia- 
bles is available for the sample observations is to estimate 
T with a poststratification estimator. This approach is 
discussed in detail by Schaible (1979), Brewer (1979), and 
Oh and Scheuren (1981). Each respondent observation 
is weighted by the inverse of the respondent proportion 
of the observations in its cell or stratum, which is defined 
on the auxiliary variables. If there are K cells with nrk 
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respondents and nk total sample observations in cell k, 
and fk is the respondent portion of cell k, the poststra- 
tification estimator is 

K 

T3 = N I [(nklnrk) E Ykiln]. 
k = I iEflk 

This estimator is equivalent to that resulting from im- 
puting the average of the respondent observations in each 
cell to each nonrespondent in that cell. A similar ap- 
proach is the "hot deck" approach, which consists of 
imputing a randomly selected cell respondent's value to 
each nonrespondent. In doing this, one is implicitly mod- 
eling the nonresponse mechanism by assuming that the 
probability of nonresponse may vary among cells but not 
within cells. If the probability of response varies with a 
continuous auxiliary variable, the poststratification ap- 
proach breaks down, because the cells cannot be con- 
structed, there being an infinite number of them. 

Another approach that makes use of auxiliary data on 
other variables that are available for the entire sample is 
known as the prediction approach. (See Royall 1970; 
Royall and Herson 1973a,b; and Hartley and Sielken 
1975.) In this approach, the analyst specifies a probability 
model generating the population from which the sample 
is taken. Usually the variable of interest is assumed to 
be determined by a regression on the auxiliary variables: 

Yi= Xii + Ei, 

where Xi is the 1 x p vector of values of the auxiliary 
variables for the ith individual and Ei is a random dis- 
turbance with zero mean. The p x 1 parameter vector 
i is estimated using the response sample, and the esti- 
mated parameter ,8 is used along with the auxiliary var- 
iables to predict a value of Y for each nonrespondent. 
Let r be the set of indices of the nonrespondents. The 
resulting estimator for the population total is 

T4= N( Yi + XiP)In. 
ieQ ier 

2.2 Nonignorable Response Mechanism 

Unfortunately, all these approaches will be systemat- 
ically in error if the probability of response varies with 
Y, a case that is very rarely considered explicitly but 
sometimes seems reasonable. The poststratification ap- 
proach breaks down because one would need to stratify 
by Y, which is, of course, unavailable for the nonre- 
spondents. The usual prediction approach breaks down 
for two reasons. First, the usual procedures for estimating 
I fail because the dependent variable in the regression 
equation is subject to stochastic censoring when the prob- 
ability of response depends on Y. Second, in this case the 
expected value of Yi given Xi for the nonrespondents is 
not Xi4 even given an unbiased estimator of P. These 
problems result from the failure of the requirements that 
the disturbance, si, be uncorrelated with Xi and have zero 
mean. When the probability of response is, for example, 
inversely related to Y, the expected value of the disturb- 

ance conditional on response is negative. Further, posi- 
tive disturbances will be less likely to be observed with 
larger values of variables with positive coefficients in the 
regression equation. than with smaller values. These re- 
sults occur because individuals with positive disturbances 
or larger values of variables with positive regression coef- 
ficients are more likely to be nonrespondents, and hence 
are less likely to be in the sample from which the regres- 
sion is estimated. 

An example of this problem is encountered in the econ- 
ometric literature on labor supply, which treats the case 
in which we are less likely to observe an individual's 
wage when he or she has a lower potential wage, since 
in this case the individual is less likely to be employed. 
This problem was identified by Gronau (1973), and so- 
lutions to this and similar estimation problems have been 
developed by Heckman (1974, 1976, 1979), Nelson (1977), 
Lee (1979), Hausman and Wise (1977), and others. In- 
deed, Little (1979, 1981) and Morris (1979) have men- 
tioned this econometric literature as providing a possible 
solution to the estimation problem we face. However, 
they are not encouraging in this regard. As Little points 
out, "the problem with these models is that estimation 
is highly sensitive to unverifiable assumptions about the 
distribution of the underlying uncensored data .. 

(1979, p. 292). The authors mentioned earlier assume that 
the disturbances in the regression model are normally~ 
distributed and derive the maximum likelihood estimators 
of the parameters of the model. Rubin (1978) provides a 
simple example that illustrates the problem with the nor- 
mality assumption: 

Suppose that we have a population of 1000 units, try to record a 
variable Z, but half of the units are nonrespondents. For the 500 
respondents, the data look half-normal. Our objective is to know 
the mean of Z for all 1000 units. Now, if we believe that the 
nonrespondents are just like the respondents except for a com- 
pletely random mechanism that deleted values (i.e., if we believe 
that mechanisms are ignorable), the mean of the respondents, that 
is, the mean of the half-normal distribution, is a plausible estimate 
of the mean for the 1000 units in the population. However, if we 
believe that the distribution of Z for the 1000 units in the population 
should look more or less normal, then a more reasonable estimate 
of the mean for the 1000 units would be the minimum observed 
value because units with Z values less than the mean refused to 
respond. Clearly, the data we have observed cannot distinguish 
between these two models except when coupled with prior as- 
sumptions. [p. 22] 

Morris (1979) notes the same problem with the maximum 
likelihood methods used in the econometric stochastic 
censoring literature and insists that ". . . the user of such 
methods must rely on solid information from other 
sources about the assumed distribution . . . " (p. 463). 

In this article we propose to test on a particular data 
set the usefulness of a stochastic censoring model, similar 
to those referenced earlier, for imputing when the prob- 
ability of response depends on the variable being im- 
puted. Fortunately, for the case we consider-imputing 
income when the probability of response depends upon 
income-there is a data set containing excellent data from 
a secondary source on the missing values from the orig- 
inal survey. We are referring to the matched CPS-SSA- 
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IRS data set, in which the data from the March 1973 
Current Population Survey are matched with administra- 
tive data from the Social Security Administration (SSA) 
and the Internal Revenue Service (IRS). We rely for our 
test on IRS wage and salary data that are available for 
all observations in our sample, including those who failed 
to respond to the CPS wage and salary question. 

3. ESTIMATION OF REGRESSION PARAMETERS S 
AND IMPUTATION OF MISSING YVALUES WHEN THE 

PROBABILITY OF RESPONSE DEPENDS ON Y 

3.1 Maximum Likelihood Estimation of ,8 

As in the previous section, we assume that for the 
population Yi has a regression on the vector of auxiliary 
variables Xi: 

Yi= Xi + Ei, (3.1) 

where Ei is a normally distributed random disturbance 
with zero mean and constant variance u2 and is uncor- 
related with E for i # j. We also assume that the prob- 
ability of response to the survey question on Y depends 
on Y. One way in which this can be modeled is to assume 
that the probability of response is a logistic function of 
Y and other variables Z: 

P(Ri = 1 I Yi, Zi) = I + exp(-ot -yYi - Zi8) 

where Ri is a variable equaling unity if individual i is a 
respondent and zero if a nonrespondent; Zi is a 1 x m 
vector of characteristics of individual i; a. and -y are scalar 
parameters; and 8 is an m x 1 parameter vector. If -y is 
positive, the probability of response varies directly with 
Y, and if -y is negative the probability of response varies 
inversely with Y. Note that if we had used a probit instead 
of logit function our model would have been essentially 
identical to that of Nelson (1977). 

Cassel, Sarndal, and Wretman (1979) suggest a similar 
model of nonresponse, explicitly considering the case in 
which the probability of response depends on the variable 
being imputed. However, they propose estimating the 
probability of response as a function of X alone, rather 
than of X and Y. The overall approach taken in their 
article is a robust prediction approach based on estimat- 
ing , using weighted least squares. However, when the 
probability of response depends on Y itself rather than 
only its systematic part (i.e., that part explained by X), 
any least squares approach will yield inconsistent esti- 
mates of , because X and E are correlated. A different 
estimation criterion is needed, and we have adopted the 
maximum likelihood criterion, assuming the disturbances 
are normally distributed. Our modifications of the Cassel, 
Sarndal, and Wretman model allow the possibility of con- 
sistent estimation of 0 when the probability of response 
depends on Y. 

We assume (3.1) and (3.2) hold for all n units in the 
sample. However, we observe Y, only for the nr respond- 
ents, while we observe Xi for all units in the sample. 

Without loss of generality we can order the data so that 
observations 1 through nr are the respondents. The like- 
lihood function for this sample will then consist of the 
product of n - nr factors for the nonrespondents and nr 
factors for the respondents. The factor of the likelihood 
for each of the respondents will be the product of the 
probability of response given income and the value of the 
density of income at that level: 

Li- 1 
i1 + exp(-a - o Yi - Zj8) 

l 
1 Yi Xi") i=l. nr. 

For each nonrespondent the factor of the likelihood is 
simply the marginal probability of nonresponse: 

= |_ (I -I + exp(-a - yY - Zj8)) (3.4) 
1 'Y-XidY\ i=nr+1,...,n. 

The likelihood function of the entire sample is thus 
fl=, Li, where Li is given by (3.3) or (3.4), according 
to the value of i. 

Maximum likelihood estimates of the parameters of 
this model can be found by numerically maximizing the 
log of this function with respect to ox, -y, 8, 0, and u, given 
Yi for i = 1,. . ., nr and Zi and Xi for i = 1, . ..., n. 
Here we use the generalized Gauss-Newton algorithm 
described by Berndt, Hall, Hall, and Hausman (1974). 
See Appendix A for computational details. 

3.2 Imputation of Yfor Nonrespondents 
Given the estimated parameters of the model, we can 

impute individual nonrespondents' Y values by assigning 
the mean of the distribution of Y conditional on nonre- 
sponse, the values of Z and X for that individual, and the 
maximum likelihood parameter estimates (x, S, -y, 8, and 
a. This mean can be calculated in a straightforward 
way using numerical integration: 

E(Yi Xi, Zi, Ri = 0) 

I Y(1 + exp(-&- -Zi) 

f1(i - 1 + exp(& - "Y Zi8)) (3.5) 

1 (Y C )dYT 

This procedure is suitable for the purpose at hand, that 
of evaluating the imputation bias that results from ignor- 
ing the effect of income on nonresponse. Other imputa- 
tion methods will be appropriate in other contexts. In the 
typical situation in which the imputed values are to be 
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used as inputs to further statistical analyses it will be 
important to avoid understating the variance of Y, as 
would occur if the conditional expectation were imputed 
to each nonrespondent. To avoid this problem, missing 
values should be assigned draws from the distribution of 
income conditional on nonresponse and on the values of 
X and Z. Using our parameter estimates, this can be 
accomplished as follows: 

1. Draw Ei from a N(O, 1) generator; 
2. Calculate Yi = XI E + &Ei and the probability of non- 

response P(R = 0 1 Yi, Z1) = 1 - 1/[1 + exp( -a - yY 
-Zi 8)]; 
3. Draw a random variable I from a uniform generator 

over the [0, 1] interval; 
4. Keep Yi as the imputed value for observation i if 

P(R = 0 1 Yi, Zj) ' -j, otherwise return to step 1. 

While we have emphasized consistency of imputation 
conditional on our model, still other considerations 
should govern the choice of an imputation method in 
practice. For example, Rubin (1978) has suggested im- 
puting multiple values for each nonrespondent, generat- 
ing multiple data sets on which the users can evaluate the 
sensitivity of their analyses to the alternative imputed 
values and calculate variances of estimates that reflect 
the loss in precision due to missing data. This loss in 
precision is ignored by single imputation procedures. See 
Herzog and Rubin (1981) for an example of this procedure 
applied to CPS data. 

4. IMPUTING INCOME TO NONRESPONDENTS IN 
THE CURRENT POPULATION SURVEY 

In this section we conduct a test of the usefulness of 
our model for imputing incomes to actual nonrespon- 
dents. However, before doing this we conduct tests of 
two assumptions underlying the model. After discussing 
the data in the first subsection, we test whether the prob- 
ability of response depends on the level of income as we 
have hypothesized. We then conduct an approximate test 
of whether the disturbances E in (3.1) are normally dis- 
tributed. These two tests, which require data on the non- 
respondents' incomes as well as on the respondents' in- 
comes, can be conducted because of the special nature 
of our data set. Then, in subsections 4.4 and 4.5, we 
discard the nonrespondents' income data and impute 
these missing values using the prediction approach, first 
ignoring the response mechanism and then incorporating 
the response mechanism by means of the method pre- 
sented in Section 3. We then compare these imputed val- 
ues to the actual values. 

4.1 Data 

The Current Population Survey is a very large multi- 
purpose monthly survey conducted by the Census Bureau 
to provide data on income and employment and other 
characteristics of the noninstitutional U.S. population. 

Each year the March survey includes additional detail on 
income and employment for the previous calendar year. 
The Census Bureau and the SSA, with the aid of the IRS, 
have matched the March 1973 survey with data from So- 
cial Security benefit and earnings records and from fed- 
eral income tax records. This is an exact match by social 
security number. This exact match file provides data on 
income in 1972 for a large sample of individuals from the 
CPS, where income nonresponse occurs, and from fed- 
eral income tax returns, where there is complete response 
on income. Using this file we can construct a data set 
that contains income data from actual CPS income non- 
respondents. The public-use file that we use is described 
in Aziz, Kilss, and Scheuren (1978). 

We use the household head's response status on the 
CPS wage and salary question to indicate which house- 
holds were nonrespondents. Throughout our analysis, 
however, our measure of income, LOGWAGE, is the 
logarithm of the IRS wage and salary variable, which is 
available for both respondents and nonrespondents. 
Thus, we use a single definition of the income variable 
for all observations. Furthermore, although we do not 
use the nonrespondents' wage and salary data in esti- 
mating our model parameters, the true "missing values" 
are available for comparison with our imputations. 

If our primary purpose were to impute CPS wage and 
salary income to nonrespondents, we would naturally use 
CPS income rather than IRS income to estimate our in- 
come and response function parameters. However, our 
goal is to construct an experimental situation in which 
the usefulness of our model can be empirically evaluated. 
For this purpose we define a sample of IRS wage and 
salary income nonrespondents, not in an arbitrary way, 
but according to nonresponse on a related variable, CPS 
wage and salary income, thereby obtaining a realistic 
pattern of missing data. It is not necessary that the two 
income measures be identical. We require instead only 
that the probability of response on the CPS be function- 
ally related to IRS income. This relationship is estimated 
in Section 4.2, which follows. 

To reduce our computational burden, we first reduce 
the sample in size and second make it less heterogeneous 
to reduce the number of parameters to be estimated. 
From the subset of the file for which exact matches to 
the IRS data were actually made, we select heads of basic 
primary families in which the head was at least 14 years 
old, was married with spouse present, had a nonfarm 
residence, and had no farm or self-employment income. 
Further, the head must have been employed full time for 
the full year 1972 in the private nonagricultural sector 
and must have filed a joint tax return. Because the IRS 
wage and salary data include spouses' wages with the 
household heads' wages we select only heads of house- 
holds with spouses who did not work in 1972. Finally, a 
few returns have unbelievably low reported IRS wage 
and salary figures for employees working full year and 
full time. We discard six observations having IRS wage 
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Table 1. Estimated Response Function Parameters and Standard Errors 

Simple Logit Equation Estimated Using Both Response Portion of the Stochastic Censoring Model 
Respondent and Nonrespondent LOGWAGE Data Estimated Using Only Respondent LOGWAGE Data 

Independent 
variables Response 1a Response 2b Response 1a Response 2b 

LOGWAGE - .4032 - .4259 - .1955 - .4301 
(,1028) (.1195) (.2665) (.3182) 

PERSONAL .3553 .4038 .3718 .4080 
(.0928) (.1078) (.0925) (.1071) 

AGE - .0388 - .0456 - .0398 - .0456 
(.0040) (.0046) (.0041) (.0049) 

EDUCATION - .0632 - .0669 - .0802 - .0659 
(.0179) (.0208) (.0268) (.0318) 

WHITE .1826 - .4353 .1495 - .4339 
(.2299) (.3497) (.2349) (.3543) 

NORTH .2401 .1825 .2386 .1855 
(.1146) (.1302) (.1147) (.1304) 

SOUTH .2877 .3993 .3092 .4040 
(.1235) (.1476) (.1256) (.1483) 

WEST .3963 .3278 .4017 .3299 
(.1442) (.1630) (.1444) (.1624) 

CONSTANT 7.9546 9.4318 6.2494 9.4583 
(.9204) (1.1022) (2.1947) (2.6659) 

Sample Size 5515 5364 5515 5364 

a Response 1 equals unity if the household head responded to the CPS wage and salary questions; zero otherwise. 
b Response 2 equals unity if the household head responded to the CPS wage and salary questions; zero if the household head refused to answer. 

and salary figures below $500.1 These restrictions leave 
a sample of 5,515 observations. 

The CPS survey procedures allow for different kinds 
of nonresponse. In addition to the cases response and 
refusal, there are cases in which the question may be 
unanswered for other reasons. Rather than attempt to, 
estimate the parameters of a polytomous response func- 
tion, we define two alternative response status variables, 
one in which any nonresponse is allowed and the second 
in which only refusals are counted as nonrespondents. 
There are 410 CPS wage and salary refusals in our sample 
and 151 cases in which the question is unanswered for 
other reasons. When the refusal variable is used, these 
151 observations are deleted from the sample, leaving a 
sample size of 5,364. 

An unfortunate feature of the data that creates addi- 
tional complications at almost every stage of our analysis 
is the censoring of all dollar amounts at 50,000. That is, 
all IRS wage and salary figures exceeding $50,000 were 
recoded to that figure in creating the public-use tape. As 
a result, we must add an additional type of term to the 
log of the likelihood function, and modify our imputation 
procedures. These modifications are explained in Ap- 
pendix A. 

' A referee suggests that these anomalous observations may be due 
to faulty matching or prior imputation of the independent variables. In 
this article we have ignored these aspects of the CPS data base. Also 
we do not deal with sample weighting, rotation group effects, and other 
issues that deserve to be addressed in future research on nonresponse 
in large surveys with complex sample designs. 

4.2 Does the Probability of Response Depend On 
Income? 

Before estimating the parameters of the model speci- 
fied in Section 3, we test the hypothesis that the proba- 
bility of response depends on income. If this hypothesis 
is rejected, then nonresponse is plausibly ignorable and 
the straightforward prediction approach can be used. For 
this test we use the entire sample of observations, in- 
cluding income data from both nonrespondents and re- 
spondents. Specifically, we hypothesize that the proba- 
bility of response on the CPS household head wage and 
salary question is a function of IRS wage and salary in- 
come as well as other variables chosen on the basis of 
a priori notions of the factors that might influence re- 
sponse behavior. The form of the relationship is assumed 
to be logistic, as specified in (3.2). The definitions of the 
two response status variables and the independent vari- 
ables are given in Appendix B. 

The parameters governing the probability of response 
for the two alternative definitions of nonresponse were 
estimated by maximum likelihood using a Newton-Raph- 
son algorithm. The estimates are shown in the first two 
columns of Table 1. We see that for both definitions of 
response, the results are qualitatively the same. Most 
important, the LOGWAGE coefficient is negative and 
almost four times as large as its standard error. This ev- 
idence strongly supports the hypothesis that the proba- 
bility of response depends on the wage and salary level, 
and indicates that the individuals with higher wages and 
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salaries have smaller probabilities of response. The re- 
sults also indicate that the individuals interviewed in per- 
son are more likely to respond than those interviewed by 
telephone, that the older individuals are less likely to 
respond than the younger, and that those with more years 
of education are less likely to respond than those with 
fewer years of education. The results indicate that indi- 
viduals in the Eastern region are less likely to respond 
than individuals in the other three regions and that race 
does not appear as a significant factor in determining the 
probability of response. 

4.3 Are the Income Function Disturbances 
Normally Distributed? 

As stated in Section 3.1, we assume the disturbances 
e in the semi-logarithmic income function (3.1) are nor- 
mally distributed. Methods such as ours have been crit- 
icized in the past due to their reliance on distributional 
assumptions that are usually, in practice, untestable. 
However, in our case we have auxiliary data that allow 
examination of distributional assumptions. In this section 
we estimate the parameters of the income function using 
the entire data set, including respondents' and nonre- 
spondents' incomes, and examine the residuals of the 
equation for evidence on the distribution of e. 

There is a large literature in economics on estimating 
earnings equations. See, for example, Mincer (1974). We 
estimate the parameters of an equation similar to those 
typically specified. Our dependent variable is LOG- 
WAGE as defined in Section 4.1, and the sample is the 
respondent portion of the sample described in Section 
4.1. The independent variables are defined in Appendix 
B. 

Our estimates of the parameters of the wage and salary 
determination equation are shown in the first column of 
Table 2. The parameters are estimated by maximum like- 
lihood under the assumption of normality of the disturb- 
ances, but taking account of the censoring of income at 
$50,000. See Appendix A for details. Our estimates are 
similar to those obtained in other studies of income de- 
termination. See, for example, Ashenfelter (1978). The 
parameters indicate that the effect of additional education 
on LOGWAGE is positive and increases with additional 
education, while the effect of additional years of expe- 
rience is positive and decreases with additional experi- 
ence. The wages of whites are significantly higher than 
the wages of nonwhites, and workers in the South earn 
significantly less than workers in the other regions. Work- 
ers residing in the suburbs of Standard Metropolitan Sta- 
tistical Areas (SMSA's) earn more than workers residing 
in central cities, and both earn more than non-SMSA 
residents. The industry and occupation effects are also 
quite reasonable. 

Table 3 compares selected percentiles of the empirical 
distribution function of the standardized residuals, (Y~ 
- Xi,j)Icr, from this equation, to percentiles of the stan- 
dard normal distribution function. The empirical distri- 

bution function has mean near zero (-.004) and is ap- 
proximately symmetric over most of its observed range. 
The symmetry result is encouraging; as noted by Rubin 
(1979) and Little (1979) in other contexts, an unwarranted 
assumption of symmetry can produce spurious evidence 
of relationships between the variables under study. The 
kurtosis of the empirical distribution is greater than that 
of the standard normal, due in part to the presence of 
some large negative residuals. A Kolmogorov test would 
lead to rejection at a high level of significance of the 
hypothesis that the observed standardized residuals are 
realizations of a standard normal variate. Because the 
residuals are censored and have unequal variances this 
result does not constitute a strictly valid test. But, if we 
take it as suggestive, the result is unfavorable to the nor- 
mality assumption. 

Nevertheless, some assumption concerning the distri- 
bution of e must be made if we are going to assume the 
response mechanism is not ignorable. In practice one 
would not be able to test hypotheses concerning the dis- 
tribution of E, not having the nonrespondents' observa- 
tions on the dependent variable, Y. Since normality of E 
would most often be assumed, we maintain that assump- 
tion in the following sections, where we conduct a more 
direct test of the usefulness of the model-a test of its 
ability to impute. 

4.4 Application of the Prediction Approach 
Under the Assumption That the Response 
Mechanism Is Ignorable 

If the dependence of the probability of response on the 
level of income could be ignored, it would be appropriate 
to apply the prediction approach, estimating the vector 
of income determination parameters using only the sam- 
ple of respondents. To evaluate the use of this procedure 
in imputing wage and salary levels to CPS wage and salary 
nonrespondents, we again use the IRS wage and salary 
variable as a proxy for the CPS variable and use the 
sample of 4,954 CPS respondents to estimate an income 
equation. The specification and estimation method are 
the same as those used in Section 4.3. 

The results of this estimation are shown in the second 
column of Table 2. As might be expected, given the sim- 
ilarity of the samples, the parameter estimates are almost 
identical to those in Column 1. We use the estimated 0i 
and the nonrespondents' values of the independent var- 
iables to impute the expected value of LOGWAGE for 
each nonrespondent. This expected value will be slightly 
less than Yi = Xii because of the censoring of LOG- 
WAGE at log(50000); the precise imputation formula is 
presented in Appendix A. 

The results of Section 4.2 imply that this prediction 
method will systematically impute income levels below 
the true values. The first two rows of Table 4 display the 
results of such a comparison. For the sample of 561 non- 
respondents, the logarithm of IRS wage and salary in- 
come exceeds the imputed value by an average of .0768- 
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Table 2. Estimated Wage Determination Equation Parameters and Standard Errors 

Estimation Method and Sample 

Regression Stochastic Censoring 

Independent Respondents and All Respondents and All Respondents and 
variables Nonrespondents Respondents Nonrespondents Refusals 

EDUCATION - .0176 - .0184 - .0181 - .0178 
(.0095) (.0098) (.0098) (.0098) 

EDUCATION 2 .3333 .3344 .3344 .3340 
(.0422) (.0415) (.0416) (.0416) 

EXPERIENCE .0344 .0340 .0342 .0343 
(.0018) (.0016) (.0017) (.0017) 

EXPERIENCE 2 -.0551 -.0557 -.0558 -.0558 
(.0033) (.0030) (.0030) (.0030) 

WHITE .1566 .1653 .1650 .1665 
(.0275) (.0243) (.0243) (.0244) 

CENTRAL CITY .1145 .1126 .1125 .1129 
(.0161) (.0162) (.0162) (.0162) 

SUBURB .1792 .1787 .1796 .1807 
(.0143) (.0148) (.0148) (.0148) 

NORTH .0298 .0342 .0336 .0335 
(.0147) (.0160) (.0160) (.0160) 

SOUTH - .0801 - .0670 - .0678 - .0687 
(.0153) (.0160) (.0160) (.0161) 

WEST - .0062 .0002 - .0008 - .0012 
(.0175) (.0187) (.0188) (.0187) 

PROFESSIONAL .4032 .3667 .3661 .3675 
(.0360) (.0397) (.0397) (.0397) 

SALES .2215 .1940 .1947 .1976 
(.0372) (.0411) (.0411) (.0411) 

CRAFT .1778 .1576 .1566 .1576 
(.0346) (.0393) (.0393) (.0393) 

LABORER .0761 .0592 .0597 .0601 
(.0433) (.0504) (.0504) (.0505) 

CONSTRUCTION .2493 .2611 .2610 .2614 
(.0243) (.0226) (.0226) (.0226) 

MANUFACTURING .1390 .1462 .1457 .1461 
(.0190) (.0184) (.0184) (.0185) 

TRANSPORTATION .2143 .2256 .2247 .2249 
(.0233) (.0229) (.0229) (.0229) 

TRADE .0719 .0672 .0667 .0671 
(.0209) (.0186) (.0186) (.0186) 

SERVICE .0030 - .0475 - .0464 - .0465 
(.0554) (.0464) (.0464) (.0464) 

CONSTANT 8.0744 8.0958 8.0936 8.0865 
(.0702) (.0749) (.0750) (.0752) 

C .4108 .4003 .4004 .4007 
Sample size 5515 4954 5515 5364 

that is, the average underestimate of income is approx- 
imately 8 percent. The sample variance of the error is 
.2307, indicating that large imputation errors are present. 

When we divide the mean imputation error by its stan- 
dard deviation, we obtain .0768/.0203 = 3.78. Under the 
null hypothesis of unbiased imputation this ratio follows 
an asymptotic standard normal distribution. An alterna- 

tive, nonparametric test uses the fact that the prediction 
approach with ignorable mechanism underestimates 
LOGWAGE in 323 of 561 cases. Under the null hypoth- 
esis that the probability of underestimate is .5, we obtain 
a test statistic of 3.55, which is also approximately unit 
normal by the normal approximation to the binomial dis- 
tribution. Both of these tests lead us to reject the null 
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Table 3. Values of Theoretical and Empirical 
Distribution Functions of Standardized Income 

Equation Residuals 

Percentile Normal Distribution Observed Distribution 

1 -2.33 -3.15 
10 -1.28 -1.03 
20 -.84 -.65 
30 -.52 -.39 
40 -.25 -.18 
50 .00 .01 
60 .25 .22 
70 .52 .44 
80 .84 .68 
90 1.28 1.10 
99 2.33 2.39 

hypothesis at a high level of significance, supporting our 
expectation that the response mechanism is not ignorable 
in this case. 

Similar conclusions are reached using the second def- 
inition of nonresponse. The same wage equation esti- 
mates are used, since the respondent sample is un- 
changed. The imputation results for the refusals only are 
shown in the second row of Table 4. The average un- 
derestimate of income is just under 7 percent. The ratio 
of this mean to its standard deviation is 3.09. Income is 
underestimated in 236 of 410 cases, yielding an alterna- 
tive, unit normal test statistic of 3.01. Again, both tests 
lead to rejection of the null hypothesis of unbiased 
imputation. 

It is interesting to note that the results of this section 
are consistent with the experience of the Census Bureau 
in imputing CPS wage and salary income to survey non- 
respondents. As reported by Herriot and Spiers (1975), 
the ratio of mean CPS imputed wages and salaries to IRS 
wages and salaries for CPS nonrespondents was .91, com- 
pared to .98 for respondents, which indicates a downward 
imputation bias of approximately seven percent. 

4.5 Application of the Prediction Approach With 
Stochastic Censoring 

In this section we present the results of applying the 
stochastic censoring model discussed in Section 3.1 to 
the simultaneous estimation of the parameters of the in- 

Table 4. Means and Variances of Differences 
between Actual and Imputed LOGWAGE 

Mean Variance of 
Imputation Imputation t Numbers 

Method Error Error Statistic of Cases 

Prediction with 
ignorable mechanism 

RESPONSE 1 .0768 .2307 3.78 561 
RESPONSE 2 .0687 .2015 3.09 410 

Prediction with 
stochastic censoring 

RESPONSE 1 .0455 .2308 2.24 561 
RESPONSE 2 .0001 .2015 0.00 410 

come and response functions using the respondents' 
LOGWAGE data and data on the independent variables 
for the respondents and nonrespondents. We then impute 
expected LOGWAGE for each nonrespondent and com- 
pare these imputations both to the actual values and to 
the values imputed in the previous section. Both defini- 
tions of nonresponse are used in turn. 

The specifications of the income and response func- 
tions are the same as discussed earlier. The estimated 
income equation parameters are shown in the third and 
fourth columns of Table 2, and the estimated response 
function parameters are shown in the third and fourth 
columns of Table 1. The estimated parameters of the 
income equations are almost identical to the estimates 
obtained using the respondent sample only. The esti- 
mated response functions are also similar to those ob- 
tained previously with the exception of the LOGWAGE 
variable. Although the coefficient on LOGWAGE in the 
response function for all nonrespondents (third column 
of Table 1) has the correct sign, it is only about one-half 
as large as the estimate in the first column, and the asymp- 
totic standard error is much larger. The results obtained 
using the second definition of nonresponse are more sat- 
isfactory, as might be expected given the clearer behav- 
ioral dichotomy between respondents and refusals. The 
LOGWAGE coefficients in the response functions for 
refusals only (the second and fourth columns of Table 1) 
are nearly equal, although the asymptotic standard error 
is much larger when only respondent income data is used 
in the estimation process. 

The negative signs on the LOGWAGE coefficients ob- 
tained using our stochastic censoring model indicate that 
relative to respondents the nonrespondents are more 
likely to have algebraically larger disturbances in the in- 
come equation at each level of Xf. As a result, we will 
be imputing higher incomes to the nonrespondents using 
(3.5) than we did in Section 4.4. Since the earlier impu- 
tations were biased downward, we expect to do better. 

The formula used in imputing LOGWAGE under sto- 
chastic censoring is given in Appendix A and is based on 
(3.5). The means and variances of our imputation errors 
are displayed in the last two rows of Table 4. For the first 
nonresponse definition, imputed income in each case is 
between .029 and .034 higher than before. As a result, 
the mean error of imputation using stochastic censoring 
is 41 percent smaller than the mean error achieved as- 
suming an ignorable response mechanism, and the vari- 
ances of the sample error distributions are nearly iden- 
tical. The stochastic censoring imputations still appear 
to have a significant downward bias, due to the relatively 
low estimated coefficient on LOGWAGE in the response 
function. Row 4 of Table 4 displays the imputation sum- 
mary for the refusal sample. The bias is nearly eliminated, 
with the mean error of imputation being only .0001 as 
compared to .0687 using the model of Section 4.4. This 
striking improvement results from the accuracy with 
which we were able to estimate the effect of LOG WAGE 
on the probability of refusal. 
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5. SUMMARY AND CONCLUSIONS 
Our most important results can be summarized as 

follows: 
We develop a method for imputing missing values when 

the probability of nonresponse depends on the variable 
being imputed. In this case, since we can develop (ac- 
tually, borrow) a model of the determination of the var- 
iable of interest, income, we can view the missing data 
problem as one of estimation with stochastic censoring 
of the dependent variable. Having solved this estimation 
problem, we can use the prediction approach to impute 
the logarithms of missing income values. 

The existence of a data set with reliable auxiliary in- 
formation on missing income values allows us to test 
some of our assumptions as well as test the usefulness 
of our imputation procedure. We test the hypothesis that 
the probability of nonresponse to the income question 
depends on the level of income, and find a strong tend- 
ency for those with higher incomes to respond less fre- 
quently. While the implications of the distributional as- 
sumptions underlying our stochastic censoring estimation 
procedure are complex and are not formally tested, in- 
formal examination of the data suggests that the distri- 
bution of the residuals of the semi-logarithmic income 
determination equation is roughly symmetric, but not 
normal. Nevertheless, application of our procedures to 
the imputation of missing income values yields signifi- 
cantly better imputations than a prediction approach that 
ignores the mechanism causing the nonresponse. 

We conclude that the stochastic censoring approach to 
imputing missing values has potential for improving on 
commonly used imputation procedures that rely on the 
assumption that the probability of nonresponse does not 
depend on the variable being imputed. Application of this 
method requires a model of the determination of the var- 
iable of interest and a model of the nonresponse mech- 
anism. Further, except in special cases such as the one 
we consider, the researcher will have little or no oppor- 
tunity to evaluate either the validity of his distributional 
assumptions or the accuracy of his imputations. How- 
ever, the results presented here provide empirical support 
for continued research using models such as ours, par- 
ticularly research on the robustness of parameter esti- 
mates and imputed values. Specifically, the work of 
Rubin (1978) and Herzog and Rubin (1981) in multiple 
imputation provides an avenue for comparing the varia- 
bility of the imputations of competing models. 

APPENDIX A: LIKELIHOOD FUNCTIONS AND 
IMPUTATION FORMULAS WITH TOPCODED 

DEPENDENT VARIABLE 
Our statistical analysis of the matched CPS-SSA-IRS 

data base is complicated by the "topcoding" of all income 
variables. That is, values exceeding $50,000 have been 
coded as $50,000, and as a result the variable LOG WAGE 
is censored from above at approximately 10.82 for a small 
number of individuals (47 respondents, 8 refusals, and 8 

other nonrespondents in the wage and salary sample). 
This censoring is in addition to the stochastic censoring 
due to nonresponse which is the primary subject of this 
article. 

The topcoding of LOGWAGE is ignored in the logit 
analysis reported in Section 4.2. The coefficients in the 
first two columns of Table 1 can therefore be expected 
to contain some small degree of error. Censoring of the 
dependent variable is, however, taken into account ex- 
plicitly in the analyses of Sections 4.3 and 4.4. The in- 
come equation is estimated by the maximum likelihood 
approach, using the entire sample in Section 4.3 and the 
respondent sample in Section 4.4. The likelihood of the 
ith observation under this specification is given by 

= 1 4)(Yi - Xi4) for Y1 < log(50000) 

Li = 

l .L1~500~ !+(Y - xii) dY, for Yi = log(50000) 
VIg(SOOOO) a (J 

(A.1) 

This is the well-known "Tobit" model developed by 
Tobin (1958). For the nontopcoded observations, the like- 
lihood value is identical to that of the standard linear 
regression model, and, in fact, the estimates obtained 
from the specification (A. 1) are close to ordinary least 
squares estimates for our data because of the small num- 
ber of topcoded observations. 

In Section 3.1 the likelihood of a respondent obser- 
vation in the fully specified stochastic censoring model 
is given as 

=I1 + exp[- 1-y - Zi8]cr ( ) 

(A.2) 

This again must be modified to take account of topcoding, 
and the formula used to derive the estimates reported in 
Section 4.5 is 

1 
1 + exp(-a - yYi - Zz8) 

x ! (Yi -xi), for Yi < log(50000) 

Li 
(.0 1 

ilog(50000) I + exp(-a - yY - Zi8) 

x I 1(Y Xil )dY. for Y1 = log(50000). 
ff r 

(A.3) 

Topcoding has no effect on the likelihood of a nonre- 
sponse observation. However, the censoring of incomes 
above $50,000 does become important when we employ 
our parameter estimates to impute the incomes of non- 
respondents and compare these imputations to the actual 
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(sometimes topcoded) values. To minimize the expected 
squared error of imputation, we calculate the mean of the 
distribution of the logarithm of income given nonresponse 
and the presence of topcoding. The expression for this 
mean is a modification of (3.5): 

E( Yi I Xi, Zi, Ri = 0) 
r log(50000) 1 

=< I ~Yl I 
= {fiO\(5oOOo) Y(1 - 1 + exp(-a - Y - Zi8) 

x I y (- Xi) dY + log(50000) 

xog(50000) 1 + exp(-a - Y- Zj) 

1f KY_-x1)P} x I y XijdY~ 

* 17 Q - 1 + exp(- a - yY- Zi- ) 

x I 4)y - ? i) dY. 

(A.4) 

Under the model of Section 4.4, in which the response 
mechanism is ignorable, the formula for imputation is 
identical to (A.4) except that the logistic probability-of- 
response terms are deleted. The formula then simplifies 
to 

l?g(50000) X' (Y- Yi E( Yi IXi) = I-c 

+ log(50000) f 1 ,$( Xi dy. 
Ig(50000) (J f 

(A.5) 
Using (A.4) or (A.5) the imputed income is always less 
than log(50000). 

In our estimation program, three-point Gaussian quad- 
rature is used to approximate all definite integrals with 
finite upper or lower bounds. Integrals with infinite upper 
and lower bounds were evaluated using a Hermite po- 
lynomial approximation. 

APPENDIX B: DEFINITIONS OF VARIABLES 

RESPONSE 1: Unity if the household head re- 
sponded to the CPS wage and 
salary questions; zero otherwise. 

RESPONSE 2: Unity if the household head re- 
sponded to the CPS wage and 
salary questions; zero if the 
household head refused to 
answer. 

LOGWAGE: The log of the IRS wage and sal- 
ary variable. 

PERSONAL: Unity if the March CPS inter- 
view was a personal interview; 
zero otherwise. 

AGE: The age of the household head. 
WHITE: Unity if the race of the house- 

hold head is white; zero 
otherwise. 

NORTH: Unity if the household resides 
in the North Central region; 
zero otherwise. 

SOUTH: Unity if the household resides 
in the South region; zero 
otherwise. 

WEST: Unity if the household resides 
in the West region; zero 
otherwise. 

EDUCATION: The number of years of educa- 
tion completed by the house- 
hold head. 

EDUCATION 2: EDUCATION squared 
(X 10-2). 

EXPERIENCE: AGE - EDUCATION - 6. 
(intended to represent years of 
experience in the labor market). 

EXPERIENCE 2: EXPERIENCE squared 
(x 10-2). 

CENTRAL CITY: Unity if the household resides 
in the central city of an SMSA; 
zero otherwise. 

SUBURB: Unity if the household resides 
in the ring of the SMSA; zero 
otherwise. 

PROFESSIONAL: Unity if the household head's 
occupation is professional or 
managerial; zero otherwise. 

SALES: Unity if the household head's 
occupation is sales or clerical; 
zero otherwise. 

CRAFT: Unity if the household head's 
occupation is craft or operative; 
zero otherwise. 

LABORER: Unity if the household head's 
occupation is laborer; zero 
otherwise. 

CONSTRUCTION: Unity if the household head is 
employed in the construction or 
mining industries; zero 
otherwise. 

MANUFACTURING: Unity if the household head is 
employed in the manufacturing 
industry; zero otherwise. 

TRANSPORTATION: Unity if the household head is 
employed in the transportation, 
communication, or utilities in- 
dustries; zero otherwise. 

TRADE: Unity if the household head is 
employed in the wholesale or 
retail trade industries; zero 
otherwise. 

SERVICE: Unity if the household head is 
employed in the personal serv- 
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ice, entertainment, or recrea- 
tion service industries; zero 
otherwise. 

CONSTANT: Unity for all observations. 

[Received August 1980. Revised June 1981.] 
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